Conjugated Systems

A Hexapentaene-Extended Quinocumulene Cyclotrimerized to a Tricyclobutabenzene Derivative**

Takeshi Kawase,* Yuichiro Minami, Naoki Nishigaki, Satoshi Okano, Hiroyuki Kurata, and Masaji Oda*

Quinocumulenes are extended biphenoquinones in which two quinoid rings are linked through a cumulenic π system. In 1967 West and Zecher reported the synthesis of the butatriene-extended quinocumulene $\mathbf{1}$. Later, this quinocumulene was shown to undergo thermal or metal-catalyzed dimerization to form [4]radialene derivative $\mathbf{2}$. However, a further extension of conjugation had not been explored to

[*] Prof. Dr. T. Kawase, Y. Minami, N. Nishigaki, S. Okano, Dr. H. Kurata, Prof. Dr. M. Oda

Department of Chemistry

Graduate School of Science, Osaka University

Toyonaka, Osaka 560-0043 (Japan)

Fax: (+81) 6-6850-5387

E-mail: tkawase@chem.sci.osaka-u.ac.jp moda@chem.sci.osaka-u.ac.jp

- [**] This work was supported by a Grant-in-Aid for Scientific Research (No.16655057 and 16350073) from the Ministry of Education, Culture, Sports, Science, and Technology (Japan).
- Supporting information for this article (selected physical data for 3, 4, 6, 8–13, selected NMR spectra, absorption spectra, and a cyclic voltammogram of 4.) is available on the WWW under http://www.angewandte.org or from the author.

date. We have synthesized a new hexapentaene-extended quinocumulene **3** from the corresponding extended 4,4'-biphenol, and found that **3** underwent cyclotrimerization to form the novel tricyclobutabenzene derivatives have been extensively studied from synthetic^[3] and theoretical^[4] points of view. Although hexamethylenetricyclobutabenzene (**5**) has been regarded as a key model compound concerning the bond alternation of the central benzene ring,^[4,5] no derivative has been prepared so far. We describe herein the mechanism of formation, the molecular structure, and physical properties of **4** as a first derivative of **5**.

A biphenol **6** as a promising precursor of **3** was synthesized from 1-acetoxy-2,6-di-*tert*-butyl-4-ethynylbenzene^[6] by Eglinton coupling and deprotection of the acetyl groups under weak alkaline conditions in 77% total yield. The new quinocumulene **3** was readily prepared by treatment of **6** with silver oxide (AgO) in benzene at room temperature for 15 min in 72% yield. The presence of *tert*-butyl groups at C2 and C6 is critical to the formation of **3**, because oxidative treatment of the biphenols **7**–**9**^[7] with AgO gave polymeric materials, probably owing to the high reactivity of the corresponding quinocumulenes. Actually, even **3** is thermally labile; when heated at 100 °C in the absence of solvent, **3** was converted into an insoluble material.

A reaction mixture of 6 and AgO was allowed to stand at room temperature for 3.5 h which led to the disappearance of the generated 3 and the appearance of new products in the mixture. The highly symmetrical cyclotrimer 4 was isolated as a sole product in 54% yield. On the other hand, treatment of 3 with freshly prepared AgO even for 3 days afforded unchanged 3. Notably, even in the absence of AgO, 4 was obtained almost quantitatively by mixing a solution of 3 and 6 (3:1) in chloroform. The reaction process can be monitored by ¹H NMR spectroscopy (see Supporting Information). NMR spectroscopic experiments revealed the stepwise formation of dimer 10, an acyclic trimer 11, and 4 (Scheme 1). The reaction of 6 with 3 afforded 10, and the reaction of 10 and 11 with 3 led to 11 and 4, respectively. The quinone 3 acts as an oxidizing agent toward these biphenols. In fact, the reaction stopped when 3 is no longer present in the solution. The high lability of 10 and 11 to silica gel chromatography has so far prevented their isolation and further characterization; however, the structures can be deduced from the ¹H NMR spectra. Treatment of monoacetate 12 (prepared by partial deprotection of the diacetate of 6) with AgO afforded the corresponding dimer 13 in 60 % yield (Scheme 2). Moreover, when exposed to air or heated at 60°C, 11 was readily converted into 4. These results support the assignments. It was already known that oxidation of 2,6di-tert-butyl-4-phenylethynylphenol (14) with appropriate oxidizing agents led to the formation of the bismethylenecyclobutene 15 in good yield (Scheme 2).[8] A radical species 16 (Scheme 1) is postulated as a reactive intermediate of the reaction. The intermediate 16 could dimerize through the allenic resonance structure to yield a conjugated bisallene.

Scheme 1. Proposed mechanism for the formation of 4.

Scheme 2. Oxidative dimerization of 12 and 14.

This, in turn, could cyclize to 15.^[9] In analogy with the mechanism, the cyclotrimerization of 3 would start with the oligomerization of the corresponding monoradical 17 generated by redox reaction of 3 with 6 or AgO used as shown in Scheme 1.

Good single crystals of **4** (with solvent molecules in a 2:1 ratio) were collected from a solution in dioxane. [10] Figure 1 reveals that the molecule has a considerably distorted propeller structure largely deviated from the ideal C_3 symmetry; the torsion angles between the exo methylene double bonds on the same cyclobutane ring are 11.7°, 60.4°, and 62.2°. In particular, the two quinomethide rings involving C27 and C69 carbons are largely curved and slightly twisted from the central benzene plane, probably as a result of steric repulsion of the bulky *tert*-butyl groups. Table 1 shows the

Zuschriften

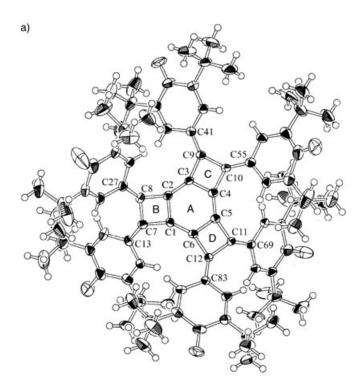
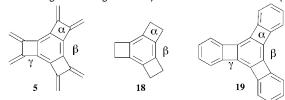



Figure 1. Single crystal structure of 4: a) ORTEP drawing with 50% probability; b) molecular packing; tert-butyl groups and hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: C1–C2 1.441(5), C2–C3 1.373(5), C3–C4 1.426(5), C4–C5 1.381(5), C5–C6 1.435(4), C6–C1 1.371(5), C1–C7 1.483(5), C2–C8 1.477(5), C3–C9 1.489(5), C4–C10 1.478(4), C5–C11 1.487(5), C6–C12 1.487(5), C7–C8 1.507(5), C9–C10 1.515(5), C11–C12 1.499(5), C7–C13 1.362(5), C8–C27 1.370(5), C9–C41 1.360(5), C10–C55 1.372(5), C11–C69 1.357(5), C12–C83 1.357(6); C41-C9-C10-C55 11.7(10), C69-C11-C12-C83 60.4(7), C13-C7-C8-C27 62.2(8); torsion angles between least squares planes: AB 9.4(2), AC 4.3(2), AD 11.1(2), BC 12.1(2), BD 15.4(2), CD 14.7(2).

observed bond lengths of the central benzene rings of 4, tricyclobutabenzene 18, and triangular [4]phenylene 19 together with the calculated values of 5. Despite its nonplanarity, the values of 4 are similar to those of 5. The degree of bond alternation of these compounds is in the order $19 \gg 4 > 18$. In conclusion, the present results have exper-

Table 1: Average bond lengths of tricyclobutabenzene derivatives (Å).

	4	5	18	19
α	1.434	1.430	1.413	1.494
β	1.375	1.385	1.390	1.336
γ	1.484	1.484	_	1.500

imentally proven that the aromatic character of the outer benzene rings of **19** plays an important role in the high degree of bond alternation of the central benzene ring.

Selected spectral data for **3** and **4** are shown in Table 2. The longest absorption maximum of **3** is considerably longer

Table 2: Selected spectral data for new extended quinones 3, 4, 10, 11.

3: IR (KBr): \tilde{v} 2954 s, 1586 s (C=O), 1456 m, 1357 m, 1250 m, 1220 w, 1082 m, 921 cm⁻¹ (m); ¹H NMR (270 MHz, CDCl₃): δ = 1.26 (s, 36 H), 7.06 ppm (s, 4 H); ¹³C NMR (67.8 MHz, CDCl₃): δ = 29.71, 35.96, 118.82, 123.83, 130.26, 140.34, 150.32, 185.84 ppm; UV/Vis (CH₂Cl₂): λ _{max} (log ε) = 301 (3.84), 351 (3.96), 477 (4.54), 491 (4.58), 531 (5.24), 614 nm (sh) (4.18)

4: IR (KBr): \tilde{v} = 2958 s, 1617 s (C=O), 1458 m, 1363 s, 1091 m, 884 cm⁻¹ (m); 1 H NMR (270 MHz, CDCl₃): δ = 1.31 (s, 54 H), 1.35 (s, 54 H), 7.38 (d, J = 2.4 Hz, 6 H), 7.53 ppm (d, J = 2.4 Hz, 6 H): 13 C NMR (67.8 MHz, CDCl₃): δ = 29.16, 29.66, 36.06, 36.13, 124.21, 127.79, 128.92, 137.49, 146.70, 150.65, 151.50, 185.87 ppm; UV/Vis (CH₂Cl₂): λ _{max} (log ε) = 348 (4.83), 424 (5.14), 447 (5.38), 517 (4.76), 558 nm (4.76)

10: ¹H NMR (270 MHz, CDCl₃): δ = 1.33 (s, 18 H), 1.41 (s, 18 H), 1.47 (s, 36 H), 5.66 (s, 2 H), 7.38 (d, J = 2.3 Hz, 2 H), 7.45 (s, 4 H), 8.09 ppm (d, J = 2.3 Hz, 2 H)

11: 1 H NMR (270 MHz, CDCl $_{3}$): δ = 1.11 (s, 18 H), 1.25 (s, 36 H), 1.32 (s, 18 H), 1.37 (s, 18 H), 1.49 (s, 18 H), 5.60 (s, 2 H), 7.24 (d, J = 2.3 Hz, 2 H), 7.34 (s, 4 H), 7.44 (d, J = 2.3 Hz, 2 H), 7.46 (d, J = 2.3 Hz, 2 H), 8.16 ppm (d, J = 2.3 Hz, 2 H)

than those of **1** (486 nm in C_6H_6) and biphenoquinone **20** (426 nm in CH_2Cl_2). The trimer **4** shows intense absorptions in the visible region of about 400–600 nm which is responsible for its deep coloration. The absorption curve is similar to that of **2**; the longest absorption band of **4** is 20–30 nm shorter and the second-longest absorption band is ≈ 50 nm longer than

$$fBu$$
 fBu
 fBu

those of 2.^[2] The carbonyl stretching of 3 (1586 cm⁻¹) is almost similar to that of 1 (1590 cm⁻¹), despite the extension of conjugation. On the other hand, the relatively high values of 2 (1630 cm^{-1}) , **4** (1617 cm^{-1}) , **13** (1608 cm^{-1}) , and **15** (1609 cm⁻¹)^[11] are consistent with the order of distortion of the biphenoquinone structures. Because the average twist angle between the quinomethide rings of $2^{[2]}$ (36°) is the largest in these compounds.

The electrochemical properties of 3 and 4 as new electron acceptors were examined by cyclic voltammetry. The reduction potentials of 1-4 and 20 are summarized in Table 3.

Table 3: Reduction potentials of extended guinones 1-4, 20.

, , , , , , , , , , , , , , , , , , , ,						
	¹ E _{1/2}	² E _{1/2}	$^{3}E_{1/2}$	⁴ E _{1/2}		
1	-0.65	-0.85				
2	-0.52	-0.85				
3	-0.42	-0.76				
4	-0.61	-0.89	-1.03	-1.35		
20	-0.96	-1.29				

V vs. Ag/Ag^+ (Fc/Fc⁺= +0.26 V) in 0.1 M nBu_4NClO_4/CH_2Cl_2 , sweep rate $100 \; mVs^{-1}$

Quinocumulene 3 shows two sets of highly reversible oneelectron reduction waves together with one irreversible oxidation wave (1.40 V). The longest conjugation of 3 in these compounds would account for the highest electron affinity. Moreover, 4 exhibits four sets of highly reversible one-electron reduction waves within the measurable range (1.5 to -2.4 V). The results suggest the facile formation of the tetraanion 21, which has a 10π electronic periphery.

These results suggest that 2,6-di-tert-butyl-4-ethynylphenol derivatives would act as versatile building blocks for the construction of extended diphenoquinone derivatives with novel structure and redox properties.

Received: August 11, 2004

Keywords: aromaticity · cumulenes · quinones · redox chemistry · strained molecules

- [1] R. West, D. C. Zecher, J. Am. Chem. Soc. 1967, 89, 153-155.
- [2] K. S. Roster, R. West, J. Org. Chem. 1975, 40, 2300-2305.
- [3] a) W. Nutakul, R. P. Thuummel, A. D. Tagger, J. Am. Chem. Soc. 1979, 101, 770-771; b) R. Diercks, K. P. C. Vollhardt, J. Am. Chem. Soc. 1986, 108, 3150-3152; c) R. Boese, A. J. Matzger, D. L. Mohler, K. P. C. Vollhardt, Angew. Chem. 1995, 107, 1630- $1633; \textit{Angew. Chem. Int. Ed. Engl. } \textbf{1995}, 34, 1478-1481; \ d) \ A.$ Stanges, N. Ashkenazi, R. Boese, J. Org. Chem. 1998, 63, 247 -253; e) S. Kumaraswamy, S. S. Jalisatgi, A. J. Marzger, O. S. Miljanic, K. P. C. Vollhardt, Angew. Chem. 2004, 116, 3797-3801; Angew. Chem. Int. Ed. 2004, 43, 3711-3715.
- [4] a) R. Faust, E. D. Glendenling, A. Streitwieser, K. P. C. Vollhardt, J. Am. Chem. Soc. 1992, 114, 8263 - 8268; b) A. Stanger, E. Tkachenko, J. Comput. Chem. 2001, 22, 1377-1386.
- [5] H. Hopf, Classics in Hydrocarbon Chemistry, Wiley-VCH, Weinheim, 1999.
- [6] H. Nishide, N. Yoshioka, K. Inagaki, E. Tsuchida, Macromolecules 1992, 25, 569 – 575; T. Kawase, N. Nishigaki, H. Kurata, M. Oda, Eur. J. Org. Chem. 2004, 3090-3096.

- [7] Among the extended biphenols 7–9, only 7 is known: B. Grant, Mol. Cryst. Lig. Cryst. 1978, 48, 175-182.
- [8] S. Hauff, A. Rieker, Tetrahedron Lett. 1972, 1451-1452.
- [9] H. Hopf, F. T. Lenich, Chem. Ber. 1973, 106, 3461-3462; K. Kleveland, L. Skattebøl, J. Chem. Soc. Chem. Commun. 1973, 432-433; F. Toda, Eur. J. Org. Chem. 2000, 1377-1386.
- [10] Crystal data for $4 \cdot (\text{dioxane})_{1/2} (C_{98}H_{124}O_7)$: $M_w = 1413.93$, dark red prisms, crystal dimension: $0.2 \times .0.2 \times 0.1 \text{ mm}^3$, triclinic, space group $P\bar{1}$ (#2), a = 13.765(6) Å, b = 17.568(9) Å, c = 19.722(9) Å, 2, $\rho_{\text{calcd}} = 1.111 \text{ g cm}^{-1}$, $Mo_{K\alpha}$ ($\lambda = 0.71075 \text{ Å}$), $2\theta_{\text{max}} = 55.0^{\circ}$; intensity data were collected on a Rigaku RAXIS-RAPID imaging-plate diffractometer at 200 K. The structure was solved with direct methods on F2 with SHELXS-97. A total of 41147 reflections were collected, 19274 unique reflections were measured and used in the refinement, 946 parameters, R1 = 0.056, Rw = 0.206 for 4615 reflections with $I > 2\sigma(I)$, GOF = 0.58, max. peak in final diff. map 0.20 e Å⁻³; all non-hydrogen atoms were refined anisotropically, hydrogen atoms (except the disordered dioxane protons) were placed geometrically and refined by using a rigid model. CCDC-241621 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/ retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).
- [11] Our result; the reported value (1650 cm⁻¹)^[8] was not reproduc-